Mark Scheme Summer 2009

GCE

GCE Chemistry (8CH07) International Supplement 2

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.
Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information please call our Customer Services on + 441204770 696, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http:// www.edexcel.com/ Aboutus/ contact-us/

(If you are calling from outside the UK please dial + 441204770 696 and state that you would like to speak to the Science subject specialist).

Summer 2009
Publications Code US021182
All the material in this publication is copyright © Edexcel Ltd 2009

Contents

1. $6 \mathrm{CH} 07 / 01$ Mark Scheme5
6CH07/01

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 (a) (i)}$	No (colour) change (to flame) OR no flame colour Accept No colour	White flame	$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1}$ (a)(ii)	Effervescence / bubbling / fizzing IGNORE hissing		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 (a) (\text { iii) }}$	Observation: (Lime water) turns milky / cloudy or white precipitate (formed) (1) Accept White solid (formed) / chalky Inference: carbon dioxide / $\mathrm{CO}_{2}(1)$	Turns white	$\mathbf{2}$

Question Number	Correct Answer	Reject	Mark		
1 (a)(iv)	Observation: White precipitate (formed) (1) Accept White solid / crystal (formed) IGNORE references to heat given out and to precipitate insoluble in excess Inference: Magnesium hydroxide / Mg(OH) 2 (1)	White substance	Confirms magnesium present	\quad	
:---					

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 ~ (b) (i) ~}$	Lithium / Li+ (1) Strontium / Sr 2+ Accept Calcium / Ca^{2+} (1)	Rubidium (i, Sr, Ca (penalise use of element symbol once only)	$\mathbf{2}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1}$ (b)(ii)	Dissolves (in the ammonia) (to form a colourless solution) Accept Soluble IGNORE references to dilute ammonia	Partially dissolves	$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 (b) (\text { iii) }}$	Observation: Brown or red-brown or orange (1) Inference: Bromine / $\mathrm{Br}_{2}(1)$	Red	$\mathbf{2}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1}$ (b)(iv)	From: Orange or yellow To: blue or green or blue-green		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1}$ (b)(v)	Mark two points independently (Hydrogen) bromide oxidized / bromine oxidation number increased (from -1 to 0) / changes from -1 to 0 /Bromide loses an electron / (hydrogen) bromide is a reducing agent (1)		2
sulfuric acid reduced / sulfur oxidation number decreases (from (+)6 to (+)4) / changes from (+)6 to (+)4 / sulfate gains electrons / sulfuric acid is an oxidizing agent (1) Accept (+)VI to (+)IV sulfate reduced			

Question Number	Correct Answer	Reject	Mark
2 (a)(i)	Vertical line at 3.5 minutes intersects extrapolated top line (1) Horizontal extrapolated lower line and 66-69 minus 20-22 $=\triangle T(1)$	incorrect or no extrapolation line joining points at 3 \& 4 minutes \& extrapolated to intersect top line (0)	2

Question Number	Correct Answer	Reject	Mark
$\mathbf{2 (a) (i i) ~}$	$\left(1 \times 50 \times 10^{-3}\right)=0.0500$ IGNORE sf		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{2 (a) (\text { iii) }}$	$65.4 \times 0.05=3.27(\mathrm{~g}) / 3.3(\mathrm{~g})$ Accept $65 \times 0.05=3.25(\mathrm{~g}) / 3.3(\mathrm{~g})$		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
2 (a)(iv)	Heat capacity negligible Accept: low specific heat capacity or zinc absorbs less heat than solution	Mass negligible No heat absorbed by zinc All heat absorbed by solution	$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
2 (a)(v)	$50 \times 4.18 \times \triangle T$ (1) ($\triangle T \mathrm{CQ}$ on (a)(i)) Penalise use of incorrect mass here only. IGNORE $\mathrm{c}=4.2 \mathrm{Jg}^{-10} \mathrm{C}^{-1}$		2
	$\triangle T$ Heat energy (kJ)		
	44 9.20		
	45 9.41		
	46 9.61		
	47 9.82		
	48 $10.0(3)$		
	49 $10.2(4)$		
	(units if given must be consistent) (1) IGNORE sf except 1 sf		

Question Number	Correct Answer	Reject	Mark
$\mathbf{2 ~ (b) (i) ~}$	Ensure equilibration or steady temperature or same temperature (as surroundings)	More accurate temperature	$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{2 ~ (b) (i i) ~}$	To allow for cooling / a cooling correction / to compensate for heat loss	Temperature correction To determine maximum temperature change More accurate temperature / $\triangle T$	$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{2 ~ (b) (i i i) ~}$	Low heat capacity Good insulator Poor heat conductor Low mass Absorbs less heat	Low specific heat capacity	$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{2 ~ (b) (i v) ~}$	Ensure uniform temperature Accept to spread out heat (uniformly) IGNORE references to mixing reagents, increasing reaction rate, enabling reactants to react and temperature accuracy.		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
2 (b)(v)	Burette / pipette / measuring cylinder/volumetric or graduated flask	Beaker /conical flask	1

Question Number	Correct Answer	Reject	Mark
$\mathbf{2 ~ (b) (v i) ~}$	Lid on polystyrene cup/ Increase insulation Accept Put cup in a beaker Magnetic stirrer	$\mathbf{1}$	

Question Number	Correct Answer	Reject	Mark		
2 (c)	Zn>Pb>Cu OR Zinc displaces both so is most reactive (1) The more exothermic $/$ negative (accept 'the larger') the $\triangle \mathrm{H}$ the greater the difference in reactivity (so lead more reactive than copper)	Answers in just terms of reactivity or electrochemical series Generalised answers References to energy or enthalpy required for the reaction	2		
(1)					
If the order of reactivity is reversed					
maximum 1				\quad	
:---					

Question Number	Correct Answer	Reject	Mark		
$\mathbf{3 ~ (a) (i)}$	Observation: Steamy/misty /white fumes (1) Explanation: Hydrogen chloride / HCl formed OR chloroalkene / chloro- compound formed OR Substitution reaction with $\mathrm{OH}(1)$	Smoke or solid	Hydrochloric acid		
Chloroalkane					
(with $\left.\mathrm{PCl}_{5}\right)$				\quad	Just $\mathrm{OH} /$ alcohol group reacts
:---					

Question Number	Correct Answer	Reject	Mark
3 (a)(ii)	Observation: Purple to colourless or brown (1) Explanation: Addition to C=C /alkene OR oxidation of C=C /alkene OR OH / alcohol group oxidised (1) Accept Reacts with C=C to form diol or with OH to form an aldehyde or a carboxylic acid OR manganate(VII) / permanganate / MnO_{4}^{-}to MnO Mn^{2+} (if decolourized) brown) or $\mathrm{Mn}(\mathrm{II}) /$	'Reacts' alone instead of addition or oxidation 'Due to the presence of C=C /alkene / OH' A oxidised	

Question Number	Correct Answer	Reject	Mark
$\mathbf{3 ~ (a) (i i i) ~}$	Observation: Orange or yellow or brown (accept red-brown) to colourless (1) Explanation: (Bromine) addition to C=C /alkene (Bromine) reacts with C=C /alkene to form dibromoalkanol / dibromo compound (1)	'pink' instead of purple 'clear' instead of colourless Just 'decolourized' Reaction alone instead of addition	2

Question Number	Correct Answer	Reject	Mark
3 (b)	 OR Accept Accept OH for $\mathrm{O}-\mathrm{H}$		1

Question Number	Correct Answer	Reject	Mark
4 (a)	Funnel with neck \& tap (1) IGNORE stopper Organic layer above aqueous layer (1) Stand alone See diagrams	Conical /filter / Buchner funnel with tap Funnel too full to be stoppered	$\mathbf{2}$

Question Number	Correct Answer	Reject	Mark
4 (b)(i)	(Organic \& aqueous) layers are immiscible OR consequence of not shaking e.g. layers form Accept 'to ensure layers mix IGNORE references to rate	Just 'to mix reagents' Explanations in terms of density differences	$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{4}$ (b)(ii)	Neutralize (excess) acid / H^{+} Accept remove acid $/ \mathrm{H}^{+}$ React with acid IGNORE Use of HCl for hydrochloric acid release of CO_{2}	Just 'neutralize / neutralization	$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
4 (b)(iii)	Carbon dioxide $/ \mathrm{CO}_{2} /$ gas is formed (1) Release pressure / pressure builds up (1)	2	

Question Number	Correct Answer	Reject	Mark
4 (b)(iv)	Drying agent or to remove water	Dehydrating agent	$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{4 (b) (v)}$	To pour off the liquid leaving the solid behind	Pour / pour carefully / transfer	$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
4 (c)(i)	Bulk of the thermometer bulb adjacent to the outlet leading to the condenser (see diagram)		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
4 (c)(ii)	Water in through the lower tube and out through the upper If words are used (water in \& water out) ignore the direction of any arrows		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
4 (d)	Mass of alcohol $=5 \times 0.805=4.025$ $(\mathrm{~g})(1)$ Moles of alcohol $=4.025 \div 88=$ 0.0457 = moles of 2-chloro-2-methylbutane Mass 2-chloro-2-methylbutane (100\% yield) = 0.0457 x 106.5 = 4.87 70% yield $=4.87 \times \frac{70}{}=3.41 \mathrm{~g} \mathrm{(1)}$		$\mathbf{2}$
	ignore sf except for 1 sf If the molar masses are transposed penalise once (answer $=2.32 \mathrm{~g})$ Correct answer and some working (2)		

Further copies of this publication are available from Edexcel UK Regional Offices at www.edexcel.org.uk/ sfc/ feschools/regional/ or International Regional Offices at www.edexcel-international.org/ sfc/ academic/ regional/

For more information on Edexcel qualifications, please visit www.edexcel-international.org/ quals Alternatively, you can contact Customer Services at www.edexcel.org.uk/ ask or on + 441204770696

Edexcel Limited. Registered in England and Wales no. 4496750
Registered Office: One90 High Holborn, London, WC1V 7BH

